Example Of A Dna Research Paper

1. Cohen SN, Chang AC, Boyer HW, Helling RB. Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci USA. 1973;70:3240–4. doi: 10.1073/pnas.70.11.3240.[PMC free article][PubMed][Cross Ref]

2. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977;74:5463–7. doi: 10.1073/pnas.74.12.5463.[PMC free article][PubMed][Cross Ref]

3. Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci USA. 1977;74:560–4. doi: 10.1073/pnas.74.2.560.[PMC free article][PubMed][Cross Ref]

4. Church GM, Gilbert W. Genomic sequencing. Proc Natl Acad Sci USA. 1984;81:1991–5. doi: 10.1073/pnas.81.7.1991.[PMC free article][PubMed][Cross Ref]

5. Hunkapiller T, Kaiser RJ, Koop BF, Hood L. Large-scale and automated DNA sequence determination. Science. 1991;254:59–67. doi: 10.1126/science.1925562.[PubMed][Cross Ref]

6. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921. doi: 10.1038/35057062.[PubMed][Cross Ref]

7. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, et al. The sequence of the human genome. Science. 2001;291:1304–51. doi: 10.1126/science.1058040.[PubMed][Cross Ref]http://f1000.com/prime/718061731

8. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, Axelrod N, Huang J, Kirkness EF, Denisov G, Lin Y, MacDonald JR, Pang AWC, Shago M, Stockwell TB, Tsiamouri A, Bafna V, Bansal V, Kravitz SA, Busam DA, Beeson KY, McIntosh TC, Remington KA, Abril JF, Gill J, Borman J, Rogers Y, Frazier ME, Scherer SW, Strausberg RL, et al. The diploid genome sequence of an individual human. PLoS Biol. 2007;5:e254. doi: 10.1371/journal.pbio.0050254.[PMC free article][PubMed][Cross Ref]http://f1000.com/prime/1091782

9. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W, Chen Y, Makhijani V, Roth GT, Gomes X, Tartaro K, Niazi F, Turcotte CL, Irzyk GP, Lupski JR, Chinault C, Song X, Liu Y, Yuan Y, Nazareth L, Qin X, Muzny DM, Margulies M, Weinstock GM, Gibbs RA, Rothberg JM. The complete genome of an individual by massively parallel DNA sequencing. Nature. 2008;452:872–6. doi: 10.1038/nature06884.[PubMed][Cross Ref]

10. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, Boutell JM, Bryant J, Carter RJ, Keira Cheetham R, Cox AJ, Ellis DJ, Flatbush MR, Gormley NA, Humphray SJ, Irving LJ, Karbelashvili MS, Kirk SM, Li H, Liu X, Maisinger KS, Murray LJ, Obradovic B, Ost T, Parkinson ML, Pratt MR, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456:53–9. doi: 10.1038/nature07517.[PMC free article][PubMed][Cross Ref]

11. Wang J, Wang W, Li R, Li Y, Tian G, Goodman L, Fan W, Zhang J, Li J, Zhang J, Guo Y, Feng B, Li H, Lu Y, Fang X, Liang H, Du Z, Li D, Zhao Y, Hu Y, Yang Z, Zheng H, Hellmann I, Inouye M, Pool J, Yi X, Zhao J, Duan J, Zhou Y, Qin J, et al. The diploid genome sequence of an Asian individual. Nature. 2008;456:60–5. doi: 10.1038/nature07484.[PMC free article][PubMed][Cross Ref]http://f1000.com/prime/1157651

12. Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K, Dooling D, Dunford-Shore BH, McGrath S, Hickenbotham M, Cook L, Abbott R, Larson DE, Koboldt DC, Pohl C, Smith S, Hawkins A, Abbott S, Locke D, Hillier LW, Miner T, Fulton L, Magrini V, Wylie T, Glasscock J, Conyers J, Sander N, Shi X, Osborne JR, Minx P, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature. 2008;456:66–72. doi: 10.1038/nature07485.[PMC free article][PubMed][Cross Ref]http://f1000.com/prime/1127118

13. Ahn S, Kim T, Lee S, Kim D, Ghang H, Kim D, Kim B, Kim S, Kim W, Kim C, Park D, Lee YS, Kim S, Reja R, Jho S, Kim CG, Cha J, Kim K, Lee B, Bhak J, Kim S. The first Korean genome sequence and analysis: full genome sequencing for a socio-ethnic group. Genome Res. 2009;19:1622–9. doi: 10.1101/gr.092197.109.[PMC free article][PubMed][Cross Ref]

14. McKernan KJ, Peckham HE, Costa GL, McLaughlin SF, Fu Y, Tsung EF, Clouser CR, Duncan C, Ichikawa JK, Lee CC, Zhang Z, Ranade SS, Dimalanta ET, Hyland FC, Sokolsky TD, Zhang L, Sheridan A, Fu H, Hendrickson CL, Li B, Kotler L, Stuart JR, Malek JA, Manning JM, Antipova AA, Perez DS, Moore MP, Hayashibara KC, Lyons MR, Beaudoin RE, et al. Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding. Genome Res. 2009;19:1527–41. doi: 10.1101/gr.091868.109.[PMC free article][PubMed][Cross Ref]

15. Pushkarev D, Neff NF, Quake SR. Single-molecule sequencing of an individual human genome. Nat Biotechnol. 2009;27:847–50. doi: 10.1038/nbt.1561.[PMC free article][PubMed][Cross Ref]http://f1000.com/prime/1164671

16. International HapMap Consortium Integrating ethics and science in the International HapMap Project. Nat Rev Genet. 2004;5:467–75. doi: 10.1038/nrg1351.[PMC free article][PubMed][Cross Ref]

17. International HapMap Consortium A haplotype map of the human genome. Nature. 2005;437:1299–320. doi: 10.1038/nature04226.[PMC free article][PubMed][Cross Ref]http://f1000.com/prime/1028916

18. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM, Pasternak S, Wheeler DA, Willis TD, Yu F, Yang H, Zeng C, Gao Y, Hu H, Hu W, Li C, Lin W, Liu S, Pan H, Tang X, Wang J, Wang W, Yu J, Zhang B, Zhang Q, Zhao H, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449:851–61. doi: 10.1038/nature06258.[PMC free article][PubMed][Cross Ref]

19. Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie X, Byrne EH, McCarroll SA, Gaudet R, Schaffner SF, Lander ES, Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM, Pasternak S, Wheeler DA, Willis TD, Yu F, Yang H, Zeng C, Gao Y, Hu H, et al. Genome-wide detection and characterization of positive selection in human populations. Nature. 2007;449:913–8. doi: 10.1038/nature06250.[PMC free article][PubMed][Cross Ref]http://f1000.com/prime/1094912

20. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen Y, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim J, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437:376–80.[PMC free article][PubMed]http://f1000.com/prime/1027324

21. Drmanac R, Sparks AB, Callow MJ, Halpern AL, Burns NL, Kermani BG, Carnevali P, Nazarenko I, Nilsen GB, Yeung G, Dahl F, Fernandez A, Staker B, Pant KP, Baccash J, Borcherding AP, Brownley A, Cedeno R, Chen L, Chernikoff D, Cheung A, Chirita R, Curson B, Ebert JC, Hacker CR, Hartlage R, Hauser B, Huang S, Jiang Y, Karpinchyk V, et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science. 2010;327:78–81. doi: 10.1126/science.1181498.[PubMed][Cross Ref]http://f1000.com/prime/2063968

22. Ozsolak F, Ting DT, Wittner BS, Brannigan BW, Paul S, Bardeesy N, Ramaswamy S, Milos PM, Haber DA. Amplification-free digital gene expression profiling from minute cell quantities. Nat Methods. 2010;7:619–21. doi: 10.1038/nmeth.1480.[PMC free article][PubMed][Cross Ref]

23. Schadt EE, Turner S, Kasarskis A. A window into third-generation sequencing. Hum Mol Genet. 2010;19:R227–40. doi: 10.1093/hmg/ddq416.[PubMed][Cross Ref]

24. Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, Leamon JH, Johnson K, Milgrew MJ, Edwards M, Hoon J, Simons JF, Marran D, Myers JW, Davidson JF, Branting A, Nobile JR, Puc BP, Light D, Clark TA, Huber M, Branciforte JT, Stoner IB, Cawley SE, Lyons M, Fu Y, Homer N, Sedova M, Miao X, Reed B, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475:348–52. doi: 10.1038/nature10242.[PubMed][Cross Ref]http://f1000.com/prime/12323958

25. Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet. 2010;11:31–46. doi: 10.1038/nrg2626.[PubMed][Cross Ref]http://f1000.com/prime/718061732

26. Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA. A map of human genome variation from population-scale sequencing. Nature. 2010;467:1061–73. doi: 10.1038/nature09534.[PMC free article][PubMed][Cross Ref]http://f1000.com/prime/7338962

27. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56–65. doi: 10.1038/nature11632.[PMC free article][PubMed][Cross Ref]http://f1000.com/prime/717971074

28. Tennessen JA, Bigham AW, O’Connor TD, Fu W, Kenny EE, Gravel S, McGee S, Do R, Liu X, Jun G, Kang HM, Jordan D, Leal SM, Gabriel S, Rieder MJ, Abecasis G, Altshuler D, Nickerson DA, Boerwinkle E, Sunyaev S, Bustamante CD, Bamshad MJ, Akey JM. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science. 2012;337:64–9. doi: 10.1126/science.1219240.[PMC free article][PubMed][Cross Ref]http://f1000.com/prime/717648004

29. Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabé RR, Bhan MK, Calvo F, Eerola I, Gerhard DS, Guttmacher A, Guyer M, Hemsley FM, Jennings JL, Kerr D, Klatt P, Kolar P, Kusada J, Lane DP, Laplace F, Youyong L, Nettekoven G, Ozenberger B, Peterson J, Rao TS, Remacle J, Schafer AJ, Shibata T, Stratton MR, Vockley JG, et al. International network of cancer genome projects. Nature. 2010;464:993–8. doi: 10.1038/nature08987.[PMC free article][PubMed][Cross Ref]

30. Jones DTW, Jäger N, Kool M, Zichner T, Hutter B, Sultan M, Cho Y, Pugh TJ, Hovestadt V, Stütz AM, Rausch T, Warnatz H, Ryzhova M, Bender S, Sturm D, Pleier S, Cin H, Pfaff E, Sieber L, Wittmann A, Remke M, Witt H, Hutter S, Tzaridis T, Weischenfeldt J, Raeder B, Avci M, Amstislavskiy V, Zapatka M, Weber UD, et al. Dissecting the genomic complexity underlying medulloblastoma. Nature. 2012;488:100–5. doi: 10.1038/nature11284.[PMC free article][PubMed][Cross Ref]http://f1000.com/prime/717962611

31. Cancer Genome Atlas Research Network Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–8. doi: 10.1038/nature07385.[PMC free article][PubMed][Cross Ref]http://f1000.com/prime/1123070

32. Ball MP, Thakuria JV, Zaranek AW, Clegg T, Rosenbaum AM, Wu X, Angrist M, Bhak J, Bobe J, Callow MJ, Cano C, Chou MF, Chung WK, Douglas SM, Estep PW, Gore A, Hulick P, Labarga A, Lee J, Lunshof JE, Kim BC, Kim J, Li Z, Murray MF, Nilsen GB, Peters BA, Raman AM, Rienhoff HY, Robasky K, Wheeler MT, et al. A public resource facilitating clinical use of genomes. Proc Natl Acad Sci USA. 2012;109:11920–7. doi: 10.1073/pnas.1201904109.[PMC free article][PubMed][Cross Ref]http://f1000.com/prime/718061733

33. Bashiardes S, Veile R, Helms C, Mardis ER, Bowcock AM, Lovett M. Direct genomic selection. Nat Methods. 2005;2:63–9. doi: 10.1038/nmeth0105-63.[PubMed][Cross Ref]

34. Turner EH, Ng SB, Nickerson DA, Shendure J. Methods for genomic partitioning. Annu Rev Genomics Hum Genet. 2009;10:263–84. doi: 10.1146/annurev-genom-082908-150112.[PubMed][Cross Ref]

35. Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, Howard E, Shendure J, Turner DJ. Target-enrichment strategies for next-generation sequencing. Nat Methods. 2010;7:111–8. doi: 10.1038/nmeth0610-479c.[PubMed][

Deoxyribonucleic acid is present in all organisms. Whether it is mammal, bird or bacteria DNA is responsible for a functioning organism. Looking at the two tables provided, there are some noticeable trends that could be identified, as well as conclusions that can be derived. The idea that more complex organism have more DNA mass per cell, that the mass of DNA in somatic cells is constant (there is a range but it is very slight) for any particular organism, that sperm cells are haploid cells and that all organisms have DNA present in their cells are ideas present from the tables provided.

The fact that all of the organisms, whether it is mammal, bird or fungi have a mass of DNA present in their cells shows that DNA is present for a reason. If a mammal has an approximate DNA mass in each cell of 6pg and birds have an average DNA mass of 2pg per cell then this DNA has to have a specific function in the body, which explains its initial appearance in each cell. Also, because the organism has a DNA mass in each cell then DNA would have to be passed from the parents onto their offspring.

The masses of DNA in the somatic cells of the chicken are all approximately the same. The DNA mass found in a heart cell of the chicken measured at 2.45 pg while the mass of the DNA in each kidney cell weighed at 2.50pg. This can be explained by the fact that when an egg is fertilized by a sperm cell, the fertilized egg eventually becomes the starting point for all the different cells. During the process of mitosis, the fertilized egg is duplicating to form a cluster of cells, while doing so the DNA is also being duplicated and eventually these cluster of cells will become specialized for different functions in different areas of the body. The small but notable variance in the value of masses of the somatic cells can be attributed to experimental error.

More complex organisms have a higher DNA mass content per cell. Per cell a mammal has a DNA mass content per cell of 6 pg while a bird has an average DNA mass content of 2pg. The mass of DNA present in each of the cells is dependant on how complex the organism is, the higher the complexity the more DNA that is needed for the organism to function with its internal functions. Since there is more information for the organism itself, then the DNA mass will increase.

From the tables provided the mass of the DNA found in sperm cells can be noted. While the mass of DNA seems to fall in the same range for all the different cells in the chicken’s body, the sperm cell is an odd case. With a mass of DNA of 1.26 pg the sperm cell holds the smallest number, as well as the number that does not fit in with the rest of the other values assigned as values for DNA in the different parts of the cells in the chicken’s body. This can be explained by the fact that the sperm cell is a haploid cell, and that it carries half the DNA that an organism will eventually obtain, the other half coming from the egg. If the sperm cell, with a DNA mass of 1.26 pg were to fertilize the egg (which has a DNA mass of 1.26 pg), the resulting organism will have a DNA mass of 2.52 pg. This value fits in with the rest of the values observed in the second chart. It can be noted that DNA is passed on from both the sperm and egg cell.

The initial presence of the DNA in each of the organism’s cells, the fact that the mass of DNA in each of the somatic cells of the chicken is approximately the same, that sperm cells carry half of the mass of DNA of an ordinary somatic cell, and that more complex organisms have a higher DNA mass content per cell than lower organism are ideas present in the tables. From these four points extracted from the tables DNA seems to be an important component for each organism responsible for carrying information.

You can also order a custom essay, term paper or research paper on DNA from our online custom writing service which provides students with high-quality custom written papers.

2.00 avg. rating (61% score) - 1 vote

Tags: biology essays, dna research papers, examples of research paper, research paper on dna, sample research paper

0 thoughts on “Example Of A Dna Research Paper”

    -->

Leave a Comment

Your email address will not be published. Required fields are marked *